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1 training session

500 ton CO2 emmisions

1000 cars driving 1000 km
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Hyperdimensional Computing (HDC)

or Vector Symbolic Architectures (VSA)

▶ maps input data to hyperdimensional (HD) space

▶ HD vectors with dimension up to ten thousand
▶ dense binary vectors (i.e., elements are 0 or 1 with equal

probability)

▶ uses simple HD arithmetic vector operations

▶ bundling: superimpose / combine vectors (e.g., element-wise
addition)

▶ binding: associate vectors (e.g., XOR product)
▶ permutation: include order (e.g., circular shift)
▶ similarity: compare vectors (e.g., Hamming distance)
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Advantages

▶ Brain-inspired

▶ Noise robustness [3, 15, 11]

▶ Parallel computations

▶ Lightweight

▶ Energy-efficient [11]

▶ Few data requirements [11]

▶ Low latency [11]
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Applications

HDC has already been used in several applications, such as

▶ speech recognition [1, 2]

▶ human activity recognition [4]

▶ hand gesture recognition [12, 7, 16]

▶ character recognition [6]

▶ text classification [9]

▶ classification of medical images [5, 14]

▶ time series classification [13]

▶ robotics [8]

12 / 26



Applications

HDC has already been used in several applications, such as

▶ speech recognition [1, 2]

▶ human activity recognition [4]

▶ hand gesture recognition [12, 7, 16]

▶ character recognition [6]

▶ text classification [9]

▶ classification of medical images [5, 14]

▶ time series classification [13]

▶ robotics [8]

12 / 26



Applications

HDC has already been used in several applications, such as

▶ speech recognition [1, 2]

▶ human activity recognition [4]

▶ hand gesture recognition [12, 7, 16]

▶ character recognition [6]

▶ text classification [9]

▶ classification of medical images [5, 14]

▶ time series classification [13]

▶ robotics [8]

12 / 26



Applications

HDC has already been used in several applications, such as

▶ speech recognition [1, 2]

▶ human activity recognition [4]

▶ hand gesture recognition [12, 7, 16]

▶ character recognition [6]

▶ text classification [9]

▶ classification of medical images [5, 14]

▶ time series classification [13]

▶ robotics [8]

12 / 26



Training framework

1. MAPPING

2. ENCODING

3. INITIAL PROTOTYPE
CONSTRUCTION

4. TRAINING

INPUT ENCODER SAMPLE VECTOR CLASSIFIER OUTPUT

(CONTINUOUS)
ITEM MEMORY

ATOMIC VECTORS

MOST BASIC OBJECTS

ASSOCIATIVE
MEMORY

CLASS PROTOTYPES

HD
OPERATIONS

SIMILARITY
MEASURE
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Inference framework

5. INFERENCE

INPUT ENCODER QUERY VECTOR CLASSIFIER OUTPUT

(CONTINUOUS)
ITEM MEMORY

ASSOCIATIVE
MEMORY

HD
OPERATIONS

SIMILARITY
MEASURE

Two main building blocks:

▶ Encoder

▶ responsible for mapping input to HD vectors

▶ Classifier

▶ creates class prototypes during training
▶ compares query to all class prototypes during inference
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Encoder

It is already clearly defined in the literature how to encode:

▶ text data [10]

▶ numeric data [2, 4]

▶ time-series data [12]

A uniform framework to encode (binarized) images
is still lacking in the literature.
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Encoder

Smets, L., Van Leekwijck, W., Tsang, I.J. &
Latré, S. (2024). An Encoding Framework for

Binarized Images using Hyperdimensional
Computing. Submitted to Frontiers in Big

Data.
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Encoder

MNIST data set Fashion-MNIST data set

▶ Resulted in an accuracy of 97.92% on the test set for the
MNIST data set and 84.62% for the Fashion-MNIST data
set.

▶ The obtained results outperform other studies using native
HDC with different encoding approaches and are on par with
more complex hybrid HDC models and lightweight binarized
neural networks.
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Encoder

MNIST-C data set

▶ The proposed encoding approach demonstrates higher
robustness to noise and blur compared to the baseline
encoding.
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Classifier

During training, only misclassified samples are used to update
class prototypes, i.e., the samples for which highest similarity is

not obtained for correct class.

What if for a correctly classified sample, the similarity to
the class with the second highest similarity is only slightly

lower than the similarity to the class with the highest similarity?
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Encoder

Smets, L., Van Leekwijck, W., Tsang, I.J. &
Latré, S. (2023). Training a Hyperdimensional
Computing Classifier Using a Threshold on its
Confidence. Neural Computation, 35 (12):
2006–2023.
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Classifier

▶ Tested on ISOLET, UCIHAR, CTG and HAND data set

▶ Resulted in an HDC classifier that is more accurate and
more confident in its predictions.
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Thank you!

Questions?
Suggestions?
Remarks?

Find me on LinkedIn:

or contact me via email:
laura.smets@uantwerpen.be
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