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simple HD arithmetic vector operations

bundling: superimpose / combine vectors (e.g., element-wise
addition)

binding: associate vectors (e.g., XOR product)

permutation: include order (e.g., circular shift)

similarity: compare vectors (e.g., Hamming distance)
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Parallel computations @
Lightweight

Energy-efficient [11]

Few data requirements [11]
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speech recognition [1, 2]

human activity recognition [4]

hand gesture recognition [12, 7, 16]
character recognition [6]

text classification [9]

classification of medical images [5, 14]
time series classification [13]

robotics [8]
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Inference framework

(CONTINUOUS) ASSOCIATIVE
ITEM MEMORY MEMORY

INPUT —| ENCODER QUERY VECTOR — CLASSIFIER OUTPUT

HD SIMILARITY
OPERATIONS MEASURE

Two main building blocks:
» Encoder
> responsible for mapping input to HD vectors
» Classifier

> creates class prototypes during training
» compares query to all class prototypes during inference
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Encoder

It is already clearly defined in the literature how to encode:
> text data [10]
» numeric data [2, 4]
> time-series data [12]

A uniform framework to encode (binarized) images
is still lacking in the literature.
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Encoder

Smets, L., Van Leekwijck, W., Tsang, 1.J. &
Latré, S. (2024). An Encoding Framework for
Binarized Images using Hyperdimensional
Computing. Submitted to Frontiers in Big

Data.
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» Resulted in an accuracy of 97.92% on the test set for the

MNIST data set and 84.62% for the Fashion-MNIST data
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» Resulted in an accuracy of 97.92% on the test set for the
MNIST data set and 84.62% for the Fashion-MNIST data
set.

» The obtained results outperform other studies using native
HDC with different encoding approaches and are on par with

more complex hybrid HDC models and lightweight binarized IDLab
neural networks.
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(MNIST-C data set)

» The proposed encoding approach demonstrates higher
robustness to noise and blur compared to the baseline IDLab
encoding.
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During training, only misclassified samples are used to update
class prototypes, i.e., the samples for which highest similarity is
not obtained for correct class.
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Classifier

During training, only misclassified samples are used to update
class prototypes, i.e., the samples for which highest similarity is
not obtained for correct class.

What if for a correctly classified sample, the similarity to
the class with the second highest similarity is only slightly
lower than the similarity to the class with the highest similarity?
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Encoder

Smets, L., Van Leekwijck, W., Tsang, 1.J. &
Latré, S. (2023). Training a Hyperdimensional
Computing Classifier Using a Threshold on its
Confidence. Neural Computation, 35 (12):
2006-2023.
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Classifier

» Tested on ISOLET, UCIHAR, CTG and HAND data set
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Classifier

» Tested on ISOLET, UCIHAR, CTG and HAND data set

» Resulted in an HDC classifier that is more accurate and
more confident in its predictions.
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laura.smets@uantwerpen.be
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